Technology Review Published by MIT
http://www.technologyreview.
The rodent recovery spurs hope that humans could one day benefit from similar treatments.
Susan Young <http://www.technologyreview.
Thursday, September 13, 2012
Rats once paralyzed from complete surgical cuts through their spinal cords can walk again after stem cells were transplanted into the site of the injury, report <http://www.sciencedirect.com/
Buying it cialis no prescription from online market will provide you at the lower price. This adds to the effect wholesale cialis price of the capsules. This will permit the hair follicles to online cialis generic be additional open on the blood stream to get the old blood pumping. There are several factors that cause the damage to the penis. order viagra cheap field.
Neural stem cells, derived from aborted fetal spinal cord tissue, were
implanted onto each side of the spinal cord injury in the rats along with a supportive matrix and molecular growth factors. The human stem cells grew into the site of injury and extended delicate cellular projections called axons into the rats spinal cord, despite the known growth-inhibiting environment of the injured spinal cord. The rats’ own neurons sent axons into the transplanted material and the rats were able to move all joints of their hind legs.
The cells are produced by a Rockville, Maryland company called Neuralstem <http://www.neuralstem.com/> . The same cells are also being tested in ALS patients (see “New Cells for ALS Patients
<http://www.technologyreview.
<http://investor.neuralstem.
Researchers are currently testing neural stem cells from a Newark,
California-based company called StemCells Inc. <http://www.stemcellsinc.com/> , in spinal cord injured patients; two of the three patients have reported the recover of some sensation (see “Human Stem Cells Found to Restore Memory <http://www.technologyreview.